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1. Introduction 

The acousto-optic effect has been successfully 

used since the early 1980’s in the design and 

construction of a variety of optical fiber devices, 

such as frequency shifters, tapers, couplers, filters 

and modulators. When acoustic waves propagate in 

fibers, they cause strain along the guide and change 

the electrical permitivitty of the material by means 

of the mechanism known as photoelasticity [1]. For 

instance, the strain field causes alterations in the 

impermeability tensor, which is converted into 

changes in the effective refractive index neff, 

described as 
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where pij are the components of the elasto-optic 

tensor, and εj is the j-th component of the strain field. 

By controlling the frequency and amplitude of the 

propagating acoustic wave, one is able to modulate 

the characteristics of the light guided in the 

structure. 

The study of the acousto-optic interaction in 

fibers began with the understanding of the 

propagation of acoustic waves in rod-like structures. 
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The equations describing such propagation were 

first derived by Pochhammer in 1876 [2], and 

independently by Chree in 1889 [3] and are based on 

the solution of a boundary value problem in the 

theory of elasticity. Several textbooks dealing with 

the generation, processing and detection of acoustic 

signals are available, in which the propagation of 

acoustic waves in cylindrical structures is 

approached [4–6]. A detailed description of the 

acoustic modes propagating in a linear elastic 

isotropic cylindrical structure can also be found in 

Thurston [7], who studied the mechanical resonant 

modes in rod waveguides. His work presented the 

solutions and limitations of guiding in structures 

with different configurations such as waveguides 

without cladding, with thin cladding and infinite 

cladding. From these studies and references, one 

learns that acoustic modes propagating in guides can 

be largely classified as longitudinal, torsional and 

flexural waves. And for the propagation in uniform 

thin rod-like structures, such as optical fibers, the 

lowest order acoustic modes are of particular 

importance. 

The basic device for generating acoustic waves 

in fibers makes use of an acousto-optic modulator, 

whose design and principle of operation were first 

proposed and patented by Zemon and Dakss in 1978 

[8]. Since then, piezoelectric transducers [9, 10] have 

been widely utilized as drivers for the excitation of 

acoustic modes. In combination with glass or metal 

horns, which have the purpose of efficiently 

coupling the waves into the fibers, they form the 

basic building block of the acousto-optic modulator 

[8, 11]. When the piezo material is driven by an 

electrical modulating signal, it induces acoustic 

waves in the horn and the fiber, modulating the 

intensity and spectral characteristics of the guided 

light by means of changes in the fiber refractive 

index and the light path. 

Generally, acousto-optic applications utilize 

either flexural or longitudinal acoustic waves to 

control the properties of guided light, although some 

also use torsional waves [12, 13]. For instance, 

flexural waves produce periodic microbends in the 

fiber and cause energy transfer between optical 

modes. The efficiency of such coupling depends 

basically on the amplitude and frequency of the 

excitation produced by the transducer, which must 

provide the specific acoustic wavelength that 

corresponds to the beat length between the optical 

modes that take part in the coupling process [14]. 

The additional use of Bragg and long period gratings 

inscribed in fibers expand the range of application 

possibilities, allowing the modulation and switching 

of the grating reflection and transmission 

characteristics [15]. 

Though the acousto-optic interaction in fibers 

covers a large range of applications, this paper 

focuses mostly on the interaction of such waves with 

Bragg and long period fiber gratings with excitation 

in the frequency range from 50 kHz to 1200 kHz, 

with a brief description, for the sake of completeness, 

of the optical mode coupling case, where no gratings 

are present in the fiber. The paper is divided as 

follows: Section 2 describes the main parameters of 

acoustic waves, their excitation technique using 

piezoelectric elements, the acoustic modes which are 

of interest for the acousto-optic interaction and the 

measurement of flexural and longitudinal modes; 

Section 3 provides the reader with a brief 

description of the acousto-optic interaction in fibers 

(without gratings) that leads to the coupling between 

optical modes; Section 4 presents the interaction of 

acoustic waves with fiber Bragg and long period 

gratings; Section 5 discusses some applications 

developed by the authors, such as the technique for 

controlling the group delay with flexural waves in 

fiber gratings, the technique for writing gratings 

under acoustic excitation and a sensor used for 

measuring viscosity; finally, Section 6 brings the 

conclusion and gives some perspectives for the 

future work in the field. 
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2. Acoustic waves 

An understanding of the propagation of acoustic 

waves in a solid, circular rod consisting of isotropic, 

homogeneous materials can be obtained by solving 

the vector equation of motion that describes the 

space-time dependent displacement function. One is 

faced with the solution of a set of three scalar 

equations in the cylindrical coordinate system from 

which the displacement field components in the 

radial, circular and axial directions are obtained [4, 

7]. Considering the propagation of a harmonic field, 

the solution of this set of equations is given as 
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where a = 2fa and ka= 2a are the angular 

frequency and wave number of the acoustic field, 

respectively, and n is an integer describing the 

circumferential field behavior. U(r), V(r) and W(r) 

represent the radial variations, described by Bessel 

functions [7]. Either the upper or lower set of 

trigonometric functions in (2) is used to find the 

desired solutions. The dispersion relation is obtained 

requiring the stresses to be zero at the cylindrical 

surface (r = a, with a as the radius of the rod) and 

choosing an integer value for n in (2). The solution 

of the resulting characteristic equation delivers the 

dispersion curves from which the propagation 

parameters and the behavior of the acoustic phase 

velocity as a function of the frequency are assessed. 

A detailed description of the dispersion curves for 

the cylindrical rod is found in [7]. 

Different values of n provide solutions for the 

different modes propagating in the guide. By using 

the lower set of trigonometric functions in (2) and 

choosing n=0, one obtains longitudinal waves, 

which shows no angular dependence upon  and is 

axially symmetric, with displacement components in 

the radial, r, and axial, z, directions only. By 

choosing the upper set of trigonometric functions 

and still keeping n = 0, one obtains torsional waves, 

where the displacement components ur and uz vanish, 

and the remaining component is independent of . 

Finally, flexural waves, which depend on the 

circumferential angle , are obtained by setting n  0. 

In this case, either set of trigonometric functions can 

be chosen. 

The analysis of the dispersion curves of the 

acoustic phase velocity for each type of acoustic 

mode is important in order to control the operation 

of the acousto-optic modulator and obtain the 

desired effect in the fiber. Initial studies on the 

propagation of acoustic waves in silica fibers 

provided the dispersion curves for the propagation 

of longitudinal, torsional and flexural waves [16]. 

By using such dispersion curves, it is convenient to 

work with the normalized frequency, defined as 

faa/ct, where fa is the acoustic frequency, a is the 

fiber radius, and ct is the transverse acoustic plane 

wave velocity in bulk silica (ct = 3764 m/s). 

The phase velocity shows a characteristic 

behavior according to the frequency regime. For 

instance, in the low frequency regime, when 

faa/ct 1, only few acoustic modes exist in the guide. 

For the lowest guided longitudinal mode, the phase 

velocity approaches that given by the extensional 

wave in silica (cext = 5760 m/s) when faa/ct  1, and 

it asymptotically assumes the velocity of Rayleigh 

waves (surface waves) when faa/ct >> 1. In this last 

case, the wave energy is confined to a thin layer 

within the rod surface, a situation also experienced 

by torsional and flexural modes. In the high 

frequency regime, that is, when faa/ct  1, the guide 

becomes highly multimode, and it is not interesting 

for acousto-optic interaction, as the existence of 

many modes makes it difficult to have a proper 

control of devices. The studies also point out that for 

acousto-optic interaction to take place there must be 

a significant overlap area between the acoustic wave 

and the optical modes in the fiber, which means that 
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the regime faa/ct  1 is the most relevant for 

acousto-optic operation [16]. 

Considering only the lowest order flexural mode, 

Blake et al. [17] classified the dispersion behavior 

according to three different acoustic propagation 

regimes in the silica fiber. For higher frequencies, 

where faa/ct  1, the acoustic energy concentrates 

on the surface of the fiber, and the acoustic 

wavelength, a, varies as 1/fa. For lower frequencies, 

where faa/ct << 1, the acoustic energy is uniformly 

distributed over the fiber cross section, and a varies 

as  
1/ 2
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where a is the fiber radius, and cext is the extensional 

acoustic wave velocity in silica. Between these two 

extremes, where a  2a, there is a transition region. 

For the acousto-optic interaction to take place in the 

core of the guide, it is important that the flexural 

wave operates in the low frequency region. The 

same analysis can be extended to the operation with 

the lowest longitudinal mode. By taking the 

dispersion curves given in [16], a simple calculation 

shows that the low frequency regime is achieved in 

conventional single mode fibers (2a = 125 m) when 

fa  < 30 MHz. In this case, there exist only three 

types of modes: the lowest order longitudinal mode, 

the lowest order torsional mode, and the double 

degenerated (x- and y-polarized) lowest order 

flexural mode. It is important to note, however, that 

the regime classification given above is an 

approximation, and in fact, the real dispersion 

curves for the acoustic modes should be taken into 

account for an exact analysis through the solution of 

the characteristic equation. 

2.1 Resonances of piezoelectric discs 

Excitation of acoustic waves in fibers is usually 

done with an acousto-optic modulator. In practice, 

the modulator is composed of a piezoelectric 

transducer, shortly named PZT (a disc made, for 

instance, of lead zirconate titanate) and an acoustic 

horn (made of glass or metal). Figure 1(a) illustrates 

one possible configuration in which the optical fiber 

segment is axially aligned with the horn [18]. 

Another popular configuration places the piezo-horn 

device transversally to the fiber [8, 16, 17]. Figure 

1(b) shows the piezo disc with its possible vibration 

directions. 
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Fig. 1 Acousto-optic modulator and its parts: (a) schematic 

of the acousto-optic modulator, (b) PZT in 2-D and 3-D xyz 

planes, (c) equivalent electric circuit, and (d) impedance-phase 

response. 

When the piezo is driven by an electrical signal 

applied transversally to the disc, it produces 

mechanical deformation that is conveyed along the 

fiber by the horn. Piezoceramic discs present a 

distinct modal behavior that depends on the 

excitation frequency, material properties and 

anisotropy, polarization and geometric dimensions 

[20]. The commonly used piezoelectric transducers 

do not respond to any excitation frequency, but only 

to narrow bands of resonances in which the 

vibration modes manifest larger and specific 

mechanical displacements [19, 20, 21]. As the 

efficiency of the acousto-optic mechanism is 

strongly dependent on the excitation frequency, and 

the type of the generated acoustic wave is also 

determined by the directional deformation of the 

piezo, the thorough characterization of the 

transducer response and its resonance modes are 

necessary for the efficient control and operation of 
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acousto-optic devices. 

Moreover, the combined analysis of the piezo 

spectral response and the modal displacement is 

useful and required for the identification of the 

acoustic modes coupled to the fiber. Due to the 

material high dielectric constant and the electric 

polarization of the electrodes, the transducer can be 

compared to a capacitor. The element can be 

represented by an equivalent circuit known as 

Butterworth-Van Dyke and is illustrated in Fig. 1(c) 

[22]. The circuit is composed of a RLC series and a 

parallel circuit (RLC/Co), where the resistor R, the 

inductor L, and the capacitor C are related to the 

damping, mass and the elastic PZT constant, 

respectively. Co is the electric capacitance between 

the electrodes. Based on this equivalent circuit, a 

resonator with the angular frequency ω=2πf can be 

modeled by using the electrical parameters only. The 

frequency response of the transducer is then 

obtained by solving the RLC circuit in terms of the 

impedance Z, written as 

 1( )Z R j L C     .         (4) 

For the situation where losses are negligible and 

the impedance is null, the series resonance fpzt is 

obtained from (4) as 

  1

2sf LC


 .          (5) 

A similar deduction applied to the parallel circuit 

(RLC//Co) in Fig. 1(c) allows the parallel or 

anti-resonance fp to be obtained 

  1

2 /( )p o of LCC C C


  .       (6) 

Once the parameters R, L and C are known or 

calculated from the material constants, (5) and (6) 

are used to calculate the piezo resonances and 

anti-resonances. Figure 1(d) illustrates the transducer 

spectral response in terms of the impedance 

magnitude and phase. The PZT resonance frequency 

fs and anti-resonance frequency fp correspond to the 

condition of the minimum impedance and maximum 

impedance, respectively. At these frequencies, the 

inductance L and the capacitance C cancel each 

other by making the phase null. As the electrical 

current flowing across the piezo is related to the 

mechanical deformation, the reduction in the 

impedance Z causes a maximum current flow I, 

which is then responsible for the maximum PZT 

deflection at the resonance fs. 

Piezo resonances can be measured by 

impedance-phase methods [23]. Figure 2 shows the 

measured PZT response in terms of the impedance 

magnitude and phase response as a function of the 

excitation frequency. Modes with small damping 

values, where the transducer losses are minima, 

present higher amplitudes and sharper resonances. 

However, higher losses reduce the impedance and 

phase amplitude of the modes and make the 

detection of certain resonances more difficult, as can 

be seen in Fig. 2 from the measured impedance 

values along the z direction [see Fig. 1(b)]. 
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Fig. 2 PZT experimental impedance-phase response (the 

solid line represents the amplitude, and the dashed line 

represents the phase response). 

However, a more detailed analysis of the 

coupled electromechanical relations and material 

constants can be performed by using the finite 

elements method (FEM). Commercial software tools 

can be very useful in this case [24, 25]. The FEM 

requires the discretization of the device geometry in 

small subdomains (elements) and builds a matrix 

equation system representing the piezo behavior. 

Solving the matrix equation allows one to obtain the 

resonant frequencies and, particularly, the 
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mechanical displacements of the piezo disc in its 

transversal (z) and radial directions [x or y axis in 

Fig. 1(b)]. 
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Fig. 3 PZT relative displacements in x and z directions over 

the frequency, showing the behavior of radial and thickness 

modes, respectively (the ratio x/z shows the preponderance of 

the oscillation in a given direction). 

The dashed and solid curves in Fig. 3 show   

the normalized piezo displacements along x 

(representing changes in the disc diameter) and 

along z (representing changes in the disc thickness), 

respectively, over the frequency range up to    

1200 kHz, obtained through the FEM technique. At  

f = 88 kHz, the fundamental mode has the highest x 

displacement among all modes. The relative 

displacement between the x and z directions (taken 

as the ratio x/z and represented by the dashed curve 

in Fig. 3) indicates the direction vibration preference 

(at f = 88 kHz, the radial displacement is 

approximately 16 times larger than the z 

displacement). The use of such analysis helps the 

identification of the disc vibration directions that 

lead to the excitation of flexural waves (for more 

intense displacements in the radial direction) or 

longitudinal waves (for more intense displacements 

in the transversal direction). 

2.2 Excitation of acoustic waves 

Although it is useful, the FEM analysis of the 

piezo disc is not sufficient to determine the types of 

acoustic modes excited in the fiber. Knowing that 

the standard optical fiber (SMF-128), for 

frequencies below 30 MHz, supports only the lowest 

flexural, torsional and longitudinal acoustic modes, 

the question on which mode (or modes) is (are) 

excited depends on the physical arrangement and on 

the highest displacement of the piezo along the 

radial or transversal directions at a certain frequency 

[11]. 

 
(a) 

 
(b) 

Fig. 4 FEM simulation of the acousto-optic modulator:    

(a) the simulated acousto-optic modulator with displacement 

details of PZT, horn and optical fiber as excited by a flexural 

wave and (b) the simulated acousto-optic modulator with 

displacement details of PZT, horn and optical fiber as excited by 

a longitudinal acoustic wave. 

The FEM technique can be of further help and 

be extended to perform a 3-D simulation of the 

whole modulator, consisting of the piezo, the horn 

and the fiber. This indeed helps the identification of 

the type of the acoustic wave excited in the fiber at 

the piezo resonances. For instance, Figs. 4(a) and 4(b) 

show the simulated acousto-optic modulator and 

details of the piezo disc, horn and optical fiber at the 

resonance frequencies f = 86 kHz and 960.3 kHz, 

respectively. For instance, the resonance f = 86 kHz 
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cause the excitation of a flexural mode, which is 

characterized by pronounced bends in the fiber, 

while at f = 906.3 kHz bends are no longer seen and 

the result is a longitudinal mode, where the 

displacement component is the highest along the 

fiber axis. Moreover, from simulations and 

experiments, it has been observed that the 

acousto-optic modulator can also excite acoustic 

waves of complex oscillations, which can be 

generally termed as hybrid, once they are a 

composition of flexural, torsional and longitudinal 

modes. 

2.3 Measurement of acoustic waves 

An extrinsic Fabry-Perot interferometer (EFPI) 

[26, 27] can be used to characterize the acoustic 

waves propagating in optical fibers [28]. The 

technique allows the analysis of oscillating surfaces 

in the space and time domains. Figure 5 shows the 

basic arrangement. The sensor is composed of a 

cavity formed by the interface of a cleaved optical 

fiber (the probe) and the sample under test (the PZT 

disc surface seen in Fig. 5). 

 Sensor probe 

PZT 

Deflection 

Electrode 

Optical fiber 

d 

I2 I1 I12 

 
Fig. 5 Diagram of the EFPI optical cavity [28]. 

A fraction of the light that propagates in the 

probe toward the sample is partially reflected in the 

fiber-air interface with the intensity I1. The fraction 

of the light transmitted into the cavity is again 

reflected on the sample (oscillating) surface with the 

intensity I2. The reflected intensities result in an 

interference pattern I12 that depends on the distance 

d between the fiber and the sample, and the optical 

wavelength λ. The optical intensity modulation 

caused by the oscillating sample surface is converted 

into the voltage by a photodetector and is examined 

with an oscilloscope. The resultant intensity seen by 

the photodetector is given as 

12 1 2 1 2

4
2 cos

d
I I I I I




     
 

.      (7) 

However, for measurement of flexural and 

longitudinal waves, the experimental setup of Fig. 6 

is used. It consists of two optical sensor heads 

(probes) based on standard single mode fibers 

(SMF-28) and optical circulators. The sensor head 1 

is used to detect the longitudinal displacement of the 

fiber, as seen in Fig. 6(b), while the sensor head 2 is 

used to measure the transversal oscillations (the 

presence of flexural deformation), as shown in Fig. 

6(c). The sensor heads are mounted in a fiber ferrule 

and fixed in a support mounted in positioning tables. 

A 50:50 coupler splits the optical power from a 

tunable laser between the sensor heads 1 and 2. The 

signals coming from both sensors reach the 

photodetector, which is connected to an oscilloscope. 

The measurements with the sensor heads 1 and 2 are 

not performed simultaneously. 

The measurement of flexural acoustic waves and 

the characterization of bendings are done by using 

the standing acoustic wave formed when the fiber 

under test is fixed on its two ends (at the horn tip on 

one side and the positioning table on the other). This 

standing wave is represented by 

2
( , ) 2 cos sin(2 )a

a

x t A x f t
 


 
  

 
     (8) 

which describes the spatial and temporal behaviors 

of the standing wave formed in the fiber and is 

illustrated in Fig. 6(c) for one oscillation cycle. In 

(8), A is the amplitude, a = 2fa is the angular 

frequency, and ka = 2a is the wave number related 

to the flexural wavelength a. The expression 

represents the result of a travelling acoustic wave 

which is totally reflected at the points where the 

fiber is fixed, thus forming the standing wave. 

Figure 6(c) shows that the standing flexural wave 
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has zero amplitude at the nodes, which are spaced by the wavelength a. 
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Fig. 6 Test setup for measuring acoustic waves: (a) diagram of the experimental setup used to measure, (b) longitudinal, and (c) 

flexural acoustic waves in the optical fiber [29]. 

Once the standing wave is established, the 

sensor head 2 either is set to measure the temporal 

periodic oscillation at an arbitrary position along the 

fiber (with the exception of points located at the 

wave nodes, where the oscillation is zero) or is 

swept over the fiber axis to measure the troughs and 

crests of the flexural wave. One measures the 

acoustic frequency in the first approach and in the 

second the peak-to-peak amplitude (acoustic 

wavelength, a) of the flexural mode. Based on the 

measured wavelength a and frequency fa, it is 

possible to estimate the phase velocity through the  
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Fig. 7 Spatial behavior of the standing flexural wave in the 

optical fiber, measured by translating the probe over the fiber 

surface [see Fig. 6(c)] [28]. 

relationship given in (3) for the low-frequency 

propagating regime. Figure 7 shows the measured 

(normalized) amplitude of the standing flexural 

acoustic wave formed in the fiber at f = 176.7 kHz 

when the sensor head 2 is swept over a distance of 

more than 3 mm along the modulator axial direction. 

Applying a fitting to the measured points provides 

the curve from which the flexural wavelength is 

calculated (in this case, a = 2.50 mm). 

On the other hand, when longitudinal acoustic 

waves are excited, the fiber is stretched at its tip [see 

Fig. 6(b)], making it possible to measure the acoustic 

frequency fa by assessing the changes in the optical 

cavity, given by the distance d, formed by the fiber 

tip at its loose end (in this case, the fiber end located 

at the positioning table must be set free to oscillate) 

and the sensor head 1 [29]. Additionally, in order to 

measure the acoustic frequency, the detected 

periodic signal must be converted into the frequency 

domain by using the oscilloscope fast Fourier 

transform (FFT) function. On performing the 

measurement, one must verify that no flexural 

deformation (or a minimum) takes place. This is 

accomplished by sweeping the sensor head 2 over 

the fiber axial length. By this way, the maximum 
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amplitude detected by the sensor head 1 is related to 

the resonant frequency of the longitudinal acoustic 

wave only. However, the presence of flexural 

deformation measured by the sensor head 2 means 

that flexural waves also exist in the fiber leading to 

the presence of hybrid modes. 

Figure 8 shows the spectrum of longitudinal 

waves excited at fa = 655 kHz, 955 kHz, and    

1002 kHz. At fa = 655 kHz, harmonics are also 

observed in the oscilloscope on both sides of the 

fundamental resonance. This is due to the 

superposition of residual flexural deflections, which 

remains present in the fiber. The resonances at fa = 

955 kHz and 1002 kHz show that only the axial 

stretching of the fiber takes place. Taking these 

measured frequencies and considering the 

extensional acoustic velocity as cext = 5760 m/s in 

bulk silica, the acoustic wavelength for the three 

axial modes are estimated as λa = 8.79 mm, 6.03 mm 

and 5.75 mm, respectively, considering the 

relationship of the phase velocity, cext = λafa, for the 

propagation in the high frequency region. 

In summary, from measurements and 

simulations, it is has been observed that the 

particular acousto-optic modulator under test 

supports a large variety of flexural acoustic modes 

in the range between 1 kHz and 250 kHz and mostly 

longitudinal modes in the range between 600 kHz 

and 1000 kHz. The range in-between is mostly 

characterized by flexural and hybrid modes. 

 

0.0 

N
or

m
al

iz
ed

 a
m

pl
it

ud
e 

Frequency (MHz) 

655 kHz 

0.5 

1.0 

0.4 0.6 0.8 1.0 1.2 1.4 

955 kHz 
1002 kHz 

 

Fig. 8 Spectrum response seen in the oscilloscope of 

longitudinal acoustic waves excited at fa = 655 kHz, 955 kHz 

and 1002 kHz [29]. 

3. Acousto-optic interaction in fibers 

The loss of power of propagating modes due to 

microbend effects in optical fibers is a well-known 

phenomenon. This occurs due to the coupling of 

guided to radiation modes in the cladding when 

phase-matching exists. Textbooks on optical fibers 

provide a basic understanding and description of 

such a coupling mechanism [30]. A thorough study 

of mode coupling between the LP01 and radiation 

modes or between the LP01 and the LP11 modes due 

to very small bends (microbends) is found in [31]. In 

this work, Taylor proposed the generation of 

microbends in fibers using mechanical transducers 

to produce a periodic perturbation in the direction of 

the fiber axis, which can be used as a LP01↔LP11 

mode converter. 

The employment of acoustic waves in fibers to 

generate microbends was initially proposed by 

Engan et al. [14], Kim et al. [32] and Blake et al. 

[17]. In their work, flexural acoustic waves were 

used to generate microbends and achieve mode 

conversion in a two-mode optical fiber using an 

acousto-optic modulator. Considering the coupling 

between two optical modes, and denoting mode 1 as 

the fundamental mode, which contains all the energy 

before the acousto-optic interaction, and mode 2 as 

the one that carries a portion of the optical power 

after the interaction takes place, the fraction of the 

light coupled from mode 1 to mode 2 over the 

interaction length (Lb), is given as [33] 
1/ 222

2 2
2

2

| |
sin | | +

2
| |

2

bL
  



        
        

 

 (9) 

with κ as the acousto-optic coupling coefficient 

given as 

1 2( , ) ( , ) ( , )
2 A

k
n x y E x y E x y dxdy      (10) 

where k is the optical wave number, E1 and E2 are 

the transversal field distributions of the optical 

modes 1 and 2, respectively, n is the refractive 

index change due to the acousto-optic effect (the 
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sum of contributions due to the material index 

change through the elasto-optic effect and due to the 

optical path length change caused by the 

microbends), and Δβ is the phase difference, defined 

as 
1 1

2 ( )
( ) ( )i a aL f

 
 

           (11) 

where a is the wavelength of the acoustic wave, Li 

is the intermodal beat length, defined as the 

necessary length for mode 1 to acquire a phase shift 

of Δφ = 2π in relation to mode 2. From (9), if Δβ is 

much larger than |κ| in the denominator, almost no 

light is coupled from mode 1 to mode 2, while if Δβ 

= 0, all light is coupled to mode 2. The intermodal 

beat length is calculated as 

2 | |iL



 .             (12) 

From (11), one notes that when Δβ = 0 the phase 

matching is satisfied, and for this particular case 

      
1 2

( )
( ) ( )i aL

n n

 
 

 


.       (13) 

This means that for obtaining the total power 

conversion from one mode to the other, the acoustic 

wavelength must be equal to the beat length between 

the modes. For standard single-mode fibers 

operating in the range from 1300 nm to 1600 nm, the 

estimation of beat lengths gives values varying from 

almost 500 μm to 650 m [34]. By this way, for 

optimal mode coupling using standard fibers, the 

acoustic wavelength must also lie in this range, 

which is much shorter than the wavelength of the 

flexural mode excited at lower frequencies and 

discussed in Section 2.3. 

Since these initial studies, many other works 

[35–37] followed, in which the design and operation 

of optical couplers, filters, gain equalizers have been 

demonstrated. In all these devices, flexural waves 

have been excited by using the configuration where 

the horn was transversally placed in relation to the 

fiber axis. Moreover, as a way of enhancing the 

strength of the acousto-optic interaction, tapers have 

also been used. This was done in order to reduce the 

fiber diameter and therefore enhance the strength of 

the flexural excitation. 

4. Interaction with gratings inscribed in 
fibers 

Another important contribution to the area of 

acousto-optics comes from the interaction of 

acoustic waves with gratings inscribed in optical 

fibers. Gratings are versatile and useful devices 

employed in several sensing and 

telecommunications applications [38, 39]. A grating 

can be inscribed in the fiber through several 

methods and is formed by the periodical change in 

the refractive index and stress-optic effect along the 

fiber core. Gratings are characterized by three main 

parameters: reflectivity/transmissivity, period and 

length, which can be modified by the strain field 

generated by the propagation of the acoustic field in 

the fiber. Indeed, this mechanism provides another 

degree of flexibility, offering new modulating and 

control alternatives and extending the range of 

applications for all-fiber grating devices. 

The following sections will provide an 

understanding of the interaction of longitudinal and 

flexural waves with Bragg and long period gratings 

through the acousto-optic mechanism in an attempt 

to cover their application in several useful 

techniques and devices. 

4.1 Interaction of FBGs with longitudinal waves 

When an acoustic longitudinal wave propagates 

along the fiber, it causes a periodic strain field, 

generating compression and rarefaction zones in the 

material. By means of the elasto-optic mechanism, 

the strain promotes a change in the fiber effective 

refractive index. If a grating is inscribed in the fiber 

core, it will also be subjected to the strain, which 

will not only cause an additional change in the 

effective indices of the forward and backward 

propagating optical modes in the guide, but also 

modulate the grating pitch. This modulation causes 

the appearance of additional bands on both sides of 
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the grating reflection spectrum with regularly spaced 

peaks, which are originated by the coupling of the 

counter-propagating optical modes, resulting from 

the fine pitch Bragg grating, due to the coarse 

acoustical pitch produced by the longitudinal wave. 

This mechanism is known as superlattice 

modulation in fiber gratings, and the structure 

formed in the interaction is known as super grating 

or sampled grating. Sampled gratings generated by 

acoustical waves were first reported in [40]. 

Russell and Liu [41] developed a simple 

mathematical model to describe the appearance of 

side bands. The periodic strain field of the acoustic 

wave perturbs the grating in two ways: (1) by 

increasing the average refractive index due to 

changes in the optical path length and the 

elasto-optic mechanism and (2) by periodically 

modulating the grating pitch, causing 

spatial-frequency modulation. The total change in 

the effective refractive index, experienced by the 

grating, is given by the strain field and the 

contribution of the pitch modulation and can be 

calculated as 

eff

0

(1 ) ( , )

{1 cos[ ( ( , ) )]}

n z t

n C K z z t dz

 



   

  
      (14) 

where 

0( , ) cos( )a az t k z t             (15) 

with ka = 2π/λa as the acoustic wave vector. λa is the 

acoustic wavelength, ωa is the angular acoustic 

frequency, and χ is the magnetic susceptibility of the 

fiber. C is the modulation depth of the effective 

refractive index n0 in the unperturbed grating, K = 

2/ is the optical grating vector, with  being the 

unperturbed grating pitch. 0 is the peak strain of the 

wave and depends on the area of the acoustic beam, 

the carried acoustic power in a medium with 

Young’s modulus E and the acoustic group velocity 

υga [41]. By replacing (15) in (14), it is shown that 

the pitch modulation produces a sequence of 

sidebands in the spatial frequency domain whose 

amplitudes can be described by a standard Bessel 

function expansion [41], as follows 

0 1

cos[ sin ( , )]

( )cos ( ){( 1)

cos[( ) ]

cos[( ) ]}

n
nn

a a

a a

Kz r z t

J r Kz J r

K nk z n t

K nk z n t










 

  

  

 

      (16) 

where r is the ratio (K0/ka). This formulation leads 

to a sequence of ghosts of the original fiber grating 

forming at spatial frequencies given by successive 

spatial sidebands of K. Figure 9 pictorially shows the 

situation of the perturbed grating and the 

corresponding optical response. 
 

(a)

(b)

FBG
A2 

Acoustic wave on Perturbed grating planes 

Unperturbed grating planes

 
Fig. 9 Representation of the sample modulation produced by 

the longitudinal acoustic wave upon interaction with the fiber 

Bragg grating (FBG). 

However, a numerical approach for examining 

the interaction of the longitudinal acoustic mode and 

the FBG taking into account the dimensions of the 

piezo-horn-fiber setup is required. This approach 

can be performed by using the FEM [42] and the 

transfer matrix method (TMM) [43, 44]. The FEM 

approach allows the strain field caused by the 

acoustic wave to be completely characterized along 

the structure while the TMM is used to obtain the 

optical spectrum of the corresponding strained 

grating. The FEM is useful because it takes into 

account the strain in the horn-fiber setup, 

considering the real dimensions of the acousto-optic 

modulator [45]. The FEM and TMM approaches are 

adequate and accurate methods, particularly if the 

structure under analysis presents an arbitrary 

cross-sectional shape along the fiber axis. 

The methodology consists of two steps. Firstly, 

the strain field in the whole structure (horn, taper 

and FBG) is obtained by using the FEM. Secondly, 

the calculated strain field is used in the TMM 
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algorithm to obtain the FBG spectrum. Figure 10 

shows the 1-D discretization of the acousto-optic 

modulator. The structure is composed of N 

one-dimensional elements with the length z = LD/N 

separated by nodes, where LD is the total length of 

the modulator. Each element is associated with a 

value that represents the area of the structure at that 

section. 
 

Element 
Node 

z

L0  
Fig. 10 Diagram of the 1-D discretization of the 

acousto-optic modulator for the simulation with the FEM [45]. 

The differential equation of the motion that 

represents the propagation of the acoustic wave in 

the structure is given by 
2

2

( , ) ( , )
( ) ( ) 0

u z t u z t
E A z A z

z z t
          

 (17) 

where u is the axial displacement, which is 

dependent on the position z and on the time t, and 

∂u/∂z is the longitudinal strain ε. The term A(z) 

accounts for the variable size of the structure along 

the z axis. E is the Young modulus, and ρ is the silica 

density, assumed to be 72.5 GPa and 2200 kg/m3 for 

the silica, respectively. In the analysis, the damping 

of the acoustic wave in the structure is neglected. 

The external excitation P(t) is applied as the 

combination of a constant load (PDC) and a harmonic 

load of the frequency ω and amplitude P0 generated 

by the piezo element. A classical linear approach for 

the finite elements is employed. After the 

one-dimensional discretization, the final matrix form 

of the problem is given by 
 Mu Ku P .            (18) 

In this expression, M and K are the mass and 

stiffness matrices of the structure, obtained by the 

superposition of mass and stiffness matrix of each 

element of the structure and given by 
1 0

0 12

e
e
ij

A z
M

         
         (19) 

and 
1 1

1 1

e
e
ij

A E
K

z

         
,        (20) 

respectively, where the superscript e represents each 

element with particular properties. Furthermore, u 

and u  in (18) represent the nodal displacement and 

acceleration vectors, respectively. The vector P is 

the nodal generalized force and is null, except for 

the first component, associated with the node at z = 

0. The external load is assumed as being a 

concentrated point load at the tip of the silica horn. 

Considering an excitation of the form P = PDC +  

P0 exp(jωt), where PDC is a constant load vector, and 

P0 is the amplitude of the harmonic load vector. 

Since the system is assumed linear, the solution of 

this problem can be found by solving the following 

equations: 

DC DC DC Mu Ku P            (21) 

0 exp( )t t j t Mu Ku P          (22) 

where PDC can be understood as a preload 

component. In this case, the acceleration is null, and 

(21) can be simplified to 
1

DC DC
u K P .            (23) 

On the other hand, since the time dependent load 

is harmonic, the solution for (22) has the form 

 0 expt j tu u . After replacing it in (22) one 

obtains 
2

0 0( )  M K u P .          (24) 

The displacement vector solution u0 is highly 

dependent on the acoustic excitation (amplitude P0 

and frequency ωa). Thus, the final solution will be 

given by 

DC 0 u u u .            (25) 

Once the displacement field is obtained, the 

strain field in each finite element is found by 

differentiation, inside each finite element, as 
1e e

e u u

z


 



.            (26) 

In this case, as the finite element is linear, ue+1 

and ue are the displacements in the local nodes e+1 

and e, respectively. 
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On the other hand, the TMM is derived from the 

coupled mode theory. Since this is a well-known 

method [43], its description will be omitted here. 

The formalism used in the algorithm is based on 

[39]. The fiber grating is divided in 

piecewise-uniform sections, and the final solutions 

for each section are combined multiplying the 

matrices associated with each section, from which 

the amplitude and power reflection coefficients of 

the grating optical response are calculated. 

The TMM approach is applied to obtain the 

optical response of different grating designs. In such 

approach, the effective refractive index perturbation 

in the core is described by [39] 

eff 0

2
( ) ( ) 1 cosn z n z z

  


        
    (27) 

where n0 is the average refraction index change 

along the fiber axis,  is the fringe visibility, and  

is the grating nominal pitch. The presence of the 

grating imposes a dielectric perturbation to the 

waveguide and forces the coupling between the 

fundamental forward and backward propagating 

optical modes. However, the propagating acoustic 

wave turns the grating pitch non-uniform and 

changes the path of the optical mode, as evidenced 

by the refractive index change in (14). Taking into 

account this non-uniformity, the reflection and 

transmission spectra can still be calculated by 

considering the same piecewise approach, whereby 

the grating is divided into discrete uniform sections 

that are individually represented by a matrix. The 

solution is found by multiplying the matrices 

associated with each one of the sections. When the 

characteristic equation is solved by making the 

matrix determinant equal to zero, the resulting 

polynomial enables the eigenvalues to be found 

[43]. 

The connection between the FEM and TMM 

approaches occurs over the relationship that 

computes the variation of the design wavelength 

along the fiber axis (z-axis) in the TMM as a 

function of the strain field [39]. This relationship is 

given by  

0( ) (1 (1 ) ( ))D D ez p z            (28) 

where pe is the photoelastic coefficient, and (z) is 

the strain field calculated using (26) in the FEM. By 

this way, once the strain field is known along the 

fiber and particularly along the grating, one can 

calculate the grating optical response (reflected and 

transmitted spectra) [45]. 

Figure 11 shows a comparison of the 

experimental response with the simulated response 

of a fiber Bragg grating to which an acoustic 

excitation at f = 1021 MHz and VPZT = 10 V 

(corresponding to an estimated P0 = 1 N applied to 

the base of the silica horn) is applied. 
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Fig. 11 Experimental and simulated responses (with the 

FEM and TMM) of a fiber Bragg grating to which an acoustic 

excitation at f = 1021 MHz is applied [18]. 

4.2 Interaction of flexural waves with FBGs 

Sections 2.2 and 2.3 described how flexural, 

longitudinal or hybrid acoustic waves are generated 

and measured. The rod-like structure represented by 

the standard silica fiber supports the lowest order 

flexural, torsional and longitudinal modes. However, 

the existence of a specific mode in the guide 

depends on the excitation condition. The FEM 

modal analysis is useful for the identification of the 

different acoustic modes in the structure, whose 

results corroborates experimental observations. For 

instance, in the low frequency regime (up to 250 kHz) 
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most resonant modes generate flexural acoustic 

waves that cause strong bending of the fiber. Even 

though they are dominant, the lowest order 

longitudinal mode is always present, but with a 

weaker amplitude. The result is the excitation of a 

hybrid wave. The joint effect of the resulting strain 

due to both waves leads to the generation of a chirp 

in the Bragg grating, as observed in its reflection 

response, as seen in Fig. 12. 
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Fig. 12 Chirp generated by a flexural acoustic wave excited 

at f = 80 kHz (the curves show the FBG reflected and 

transmitted spectra before and after the acoustic wave is turned 

on) [46]. 

The consequence of such an interaction is that 

by changing the voltage applied to the piezo disc 

one is able to control the chirp amount applied to the 

grating. The result can be better seen in Fig. 13. 
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Fig. 13 FBG reflection spectrum when excited at f =   

223.3 kHz (the ripples seen on the contour of the waveform may 

also indicate the presence of a longitudinal acoustic wave) [18]. 

The chirp effect is also accompanied by a very 

small shift in the Bragg peak wavelength, with the 

order of 20 pm [18]. This mechanism has been early 

observed in gratings inscribed in microstructured 

fibers [46], but has been observed as well in gratings 

written in standard ones [18]. 

4.3 Interaction of acoustic waves with LPGs 

A long period grating (LPG) is an optical fiber 

grating, whose period is chosen in order to couple 

light from the fundamental guided mode to forward 

propagating cladding modes. Once the energy of the 

cladding modes is lost due to absorption and 

scattering in the surrounding environment, a 

rejection band is measured in the transmission 

spectrum [47]. The wavelength-dependent 

phase-matching condition in LPGs is governed by 

the relationship 

co cl( )m mn n               (29) 

where λm is the peak wavelength of the mth 

attenuation band, nco and cl
mn  represent the effective 

indices of the fundamental guided mode and the mth 

LP0m cladding mode, respectively [48], and Λ is the 

grating period, which, in contrast to fiber Bragg 

gratings, ranges in the hundreds of micrometers due 

to the small differences between the effective 

refractive indices of the core and cladding modes 

[49]. The minimum transmission of the rejection 

band, λm, is calculated as 
21 sin ( )m

mT L            (30) 

where L is the length of the LPG, and κm is the 

coupling coefficient for the mth cladding mode, 

which is determined by the overlap integral of the 

core and cladding modes and by the amplitude of the 

periodic modulation of the mode propagation 

constants [48]. 

When an acoustic wave interacts with the LPG, 

the strain ε(z) generated by the wave shifts the LPG 

rejection band. This shift is computed as 

(1 ) ( )
m

em
p z

 



             (31) 

where Δλm is the wavelength shift experienced by 

the grating, λm
 is the peak wavelength of the 
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attenuation band when the fiber is at rest, and pe is 

the photoelastic coefficient which is assumed to be 

(1.191×106)1 for an LPG [50]. The same 

numerical approach described in Section 4.1 can be 

used to simulate the acousto-optic interaction. For 

instance, either the FEM or an alternative technique 

(such as the method of the assumed mode [51, 52]) 

can be used to calculate the strain field. The result is 

passed over to the TMM via the “design 

wavelength” in (28). This is achieved by using the 

relationship in (30), considering an infinitesimally 

weak grating with the period Λ [43, 45], and making 

Δλm = ΔλD and λm = λD0, where λD0 is the peak 

wavelength of the rejection band when the fiber is at 

rest. By this way, both the effect of the period 

variation and the change in the LPG effective 

refractive index can be accounted for at each point 

inside the grating. 

Figure 14 shows experimental results for the 

excitation of the LPG at f = 60.6 kHz. The PZT load 

varies from VPZT = 0 to 10 V. The increase in the 

amplitude of the acoustic wave reduces the peak 

transmissivity of the LPG attenuation band and 

induces a shift to longer wavelengths (“red shift”). 
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Fig. 14 LPG spectrum behavior when the PZT load varies 

from 0 to 10 V at f = 60.6 kHz [52]. 

Figure 15 shows the LPG peak transmissivity 

behavior when the PZT load changes (also is related 

to the force applied to the horn) at the excitation 

frequency f = 60.6 kHz. At VPZT = 10 V, the force 

delivered by the PZT is F = 0.0042 N (estimated 

through simulations) and a about 17 dB decrease in 

the attenuation peak is achieved. Moreover, the 

relationship between the amplitude of the acoustic 

wave and the wavelength shift is quasi-linear up to  

6 V. For this case, a wavelength shift in Δλ =    

31.6 nm over the same voltage range is observed 

[52]. 
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Fig. 15 Experimental and simulation results for the behavior 

of the LPG peak transmissivity versus the PZT load (in voltage) 

with the corresponding force (in Newtons) [52]. 

Excitation of LPGs at higher frequencies, where 

the predominant acoustic mode is longitudinal [11], 

leads to no effects in the LPG spectrum. This 

behavior indicates then that changes in the LPG 

characteristics are mainly due to the geometric 

contribution (bends) of the flexural wave to changes 

in the effective refractive index through the 

elasto-optic mechanism. 

5. Applications 

Since the first demonstration of the 

acousto-optic mechanism in fibers, several 

applications have been developed. They can 

basically be classified as applications that use only 

acoustic waves and fibers and applications where the 

acoustic waves interact with fiber gratings. 

Examples of the first class are found in [32, 33, 36]. 

Examples of the second class are found in [53–62]. 

The three reported examples below are taken from 

developments of the authors in recent years and 
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constitute new applications of the acousto-optic 

effect that can be potentially used in the fields of 

sensing and optical communications. 

5.1 Dispersion compensation 

Chromatic dispersion management is an 

important issue for a long-haul transmission system 

especially for communication rates of 40 Gb/s or 

above. The use of FBGs for dispersion 

compensation in place of the dispersion 

compensation fiber [63, 64] is an alternative solution 

as it reduces insertion losses, avoids nonlinearity 

and reduces costs [65–67]. FBGs can compensate 

both first and second order dispersion using 

nonlinear chirped fiber gratings, but the special 

chirped phase mask or complicated methods are 

required in their fabrication. At the same time, the 

control of the residual dispersion in optical links of 

high bit rates is even more critical, and a dynamic 

per-channel dispersion trimming is required [68–70]. 

In this case, the standard approach for the dynamic 

dispersion compensation employs chirped FBGs 

based on a thermal tuning technique [68], which is a 

very slow process. However, the dynamic control of 

the dispersion parameter can also be achieved using 

the acousto-optic effect, which is a faster mechanism, 

presenting a response time of approximately 17 µs in 

silica waveguides, making it useful for the control of 

group delay and pulse shaping devices. The 

acousto-optic effect leads to the broadening of the 

FBG when flexural waves interact with the grating, 

changing its group delay and dispersion parameter 

[46]. One interesting aspect is that this tunable 

dispersion compensator can be developed using a 

uniform fiber Bragg grating as opposed to many 

current FBG compensators that use chirped gratings. 

The configuration for such compensator consists 

of the silica horn-fiber system, with an optical fiber 

containing the uniform FBG. In the description that 

follows, the uniform FBG is inscribed in a standard 

single mode photosensitive fiber by direct writing, 

using an exciplex KrF laser. The total length of the 

grating is Lg = 25 mm. By adjusting the excitation 

frequency, the grating group delay profile as well as 

its bandwidth can be changed. Figure 16 shows the 

reflection and group delay behavior when different 

acoustic frequencies (flexural waves) excite the 

grating at f = 58 kHz, 117 kHz and 220 kHz, 

respectively. 
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Fig. 16 FBG spectrum and group delay behavior when a 

flexural acoustic wave is set at f = 58 kHz, 117 kHz and 220 kHz, 

respectively [18]. 

The dispersion coefficient is estimated from the 

resultant group delay measurement. In this case, the 

dispersion varies from –1353.87 ps/nm at f = 58 kHz 

over –287.38 ps/nm at f =117 kHz to –856.60 ps/nm 

at f = 220 kHz. By fixing the excitation frequency, 

one can also change the group delay and the grating 

bandwidth through the amplitude of the acoustic 

wave. Experimental observations have revealed that 

the group delay at f = 117 kHz presents the most 

linear behavior in the range between λ = 1544.25 nm 

and 1544.46 nm. This frequency is then selected for 

the control of the group delay by varying the PZT 

load. Figure 17 shows the linear dispersion behavior 

when the fiber is acoustically excited at f = 117 kHz. 

The variation of the piezo load shows that the 

dispersion parameter can be controlled in the range 

from ca. –550 ps/nm (at VPZT = 6 V) to –130 ps/nm 

(at VPZT = 10 V) [18]. The experiment has revealed 

that the group delay ripple (GDR) is also reduced. 
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For instance, the group delay ripple is caused by 

weak reflection occurring at the edges and along the 

grating, and this turns to be a critical parameter for 

compensation in a communication link. For the 

excitation at f =117 kHz, it has been observed that 

for loads varying from 6 V to 10 V the GDR 

coefficient varies from ±10.06 ps (at 6 V) to ±5.55 ps 

(at 10 V), which is within or below that of many 

commercially specified compensators (~ ±10 ps). 
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Fig. 17 Simulation and experimental dispersion behaviors as 

a function of the PZT load, when a flexural wave excites the 

fiber at f = 117 kHz [18]. 

In summary, by adjusting the frequency and 

applied voltage, one turns the acousto-optic 

modulator into a low-power, fast device for the 

dynamic control of the group delay and the 

dispersion parameter. 

5.2 Writing of gratings with acoustic waves 

The writing of fiber gratings with complex 

profiles has driven the attention of several 

researchers as they are specially praised in optical 

signal processing and wavelength division 

multiplexing (WDM) optical communication 

systems. Several techniques were developed to 

fabricate such gratings, and one of the most used is 

the method that modulates the light intensity of the 

ultraviolet (UV) beam as it is scanned over the 

phase-mask [38, 71]. However, flexural and 

longitudinal waves can also be used to control the 

writing process of gratings in fibers offering new 

degrees of control as compared to well-established 

methods. When acoustic waves propagate along 

optical fibers, different strain profiles are achieved 

depending on the nature of the mode (longitudinal or 

flexural), and different effects on gratings inscribed 

in fibers are observed. For instance, a longitudinal 

wave interacting with an FBG creates compression 

and rarefaction zones along the fiber axis and 

modifies the grating planes. The effect causes 

additional bands to appear on both sides of the 

grating reflection spectrum as a result of the 

sinusoidal sampling modulation of both average 

refractive index and the grating pitch [18, 40]. On 

the other hand, if flexural waves at low frequency 

modulate the fiber, the group delay and the 

bandwidth of the FBG spectral response will be 

changed. However, all these effects disappear as 

soon as the acoustic excitation is turned off. 

However, with the insertion of the acousto-optic 

modulator in the writing setup (as shown in Fig. 18) 

and with the control of the acoustic wave 

propagation during the grating inscription process, 

one is able to achieve permanent non-periodic 

structures in the guide. Thus, the induced refractive 

index change generated by the conventional UV 

illuminating process in the grating inscription is also 

altered by the corresponding stress profile produced 

by the acoustic field, so that controlled sampled 

gratings are fabricated [72]. Figure 19 illustrates the 

effects obtained in the grating spectra using such a 

technique under the excitation of a longitudinal 

wave. The figure shows the resultant FBG spectrum 

when the acoustic wave is switched-off after the 

writing process for 1.021 MHz (solid line) and   

919 kHz (dashed line) excitation frequencies, 

respectively. The case when no acoustic wave 

excites the fiber during the writing process is also 

shown in Fig. 19 by the dotted line. The created 

index modulation and grating pitch produce a 

non-uniform period that depends on the acoustic 

excitation period Λa. 
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Fig. 18 Illustration of the acousto-optic modulator positioned in the grating writing setup showing the fiber under the phase-mask 

[18]. 
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Fig. 19 FBG spectrum for the case when no acoustic wave 

excites the fiber during the writing process (dotted line) and 

when the longitudinal wave excites the fiber at 919 kHz (dashed 

line) and 1.021 MHz (solid line) and creates the side lobes, after 

the inscription is finished [72]. 

Moreover, when a flexural wave excites the fiber 

during the grating inscription, a periodic bending is 

generated [11]. The bending causes the 

misalignment of the UV interference pattern 

(generated by the inscription laser beam) in certain 

regions of the fiber core, so that no grating is formed. 

When the fiber is at rest, the UV interferogram 

produces the usual modulation of the refractive 

index in the fiber core. However, when the fiber is 

excited with a flexural mode [Fig. 18(b)], the core is 

dithered, thus destroying the UV fringe pattern – 

consequently, no grating is inscribed. This effect can 

be used to create sampled gratings, narrow fiber 

cavities and phase-shifted gratings [73, 74]. The first 

sampled fiber gratings were written by sampling the 

period using a hair comb [75] and shortly after by 

turning on and off a scanning laser beam either with 

a fixed amplitude mask or by modulating the laser 

beam during scanning [76]. To achieve the same 

result by acoustic modulation, as the UV writing 

beam is scanned over the phase mask, the flexural 

wave is periodically turned on and off using the 

burst function of the signal generator. 
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Fig. 20 Sampled grating written using a direct beam 

modulation technique (solid curve) and by means of flexural 

acoustic waves [73]. 

Figure 20 shows the resultant reflection spectra 

for different excitation frequencies (when flexural 

modes are excited) applied to the modulator. Initially, 

for comparison purposes, six gratings were inscribed 

using the conventional technique of modulating the 

UV writing beam (no acoustic wave excited the fiber) 

as it was scanned across the phase mask – the 

combined spectra are shown in the solid curve of Fig. 

20. Employing now the acoustic technique, the 

length and number of gratings can be set by 

controlling the acoustic frequency. For example, 

considering f = 306 kHz, approximately four 

gratings are written in a 5-cm-length piece of fiber, 
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whereas for f = 75 kHz, two gratings are obtained. If 

the frequency is kept constant and the burst time is 

tuned, this leads to a change in the number of 

gratings generated and also a change in the length of 

each grating. This methodology is also used to 

create phase-shifted gratings [74, 77]. 

The permanently imprinted sampled gratings are 

useful for creating complex filter devices suitable 

for signal multiplexing and demultiplexing or for 

serving as multiple narrowband transmission filters 

in photonic applications [78]. 

5.3 Fiber viscometer 

Viscosity is the property of materials 

characterized by their resistance to flow. It is the 

property used to predict a number of other physical, 

chemical and biological parameters such as density, 

chemical content, molecular weight and color of 

materials. Viscometers are instruments used to 

measure viscosity and are particularly employed in 

the food and pharmaceutical industries to monitor 

and control processes during the fabrication of the 

food and drugs. The most common viscometers used 

in industries are based on electro-mechanical 

techniques having the rotation and vibration of a 

probe inside the fluid as the operating principle [79, 

80]. An interesting and potential commercial 

alternative to this conventional approach is offered 

by an optical viscometer based on the acousto-optic 

effect [81]. 

Along with an LPG, an acousto-optic modulator 

can be used as a sensing element. For instance, long 

period gratings are able to measure changes in the 

external refractive index, which are manifested 

through a change in the grating dip wavelength and 

minimum transmissivity. Although viscosity can be 

related to and measured by the induced wavelength 

(Δλ) and transmittance (ΔT) shift imparted to the 

LPG as a function of the concentration, the complex 

resulting behavior turns these parameters impractical 

for sensing. However, the measurement of viscosity 

can also be obtained using the grating temporal 

response. This is achieved by using the 

acousto-optic modulator to excite a flexural acoustic 

wave, forming bends along the fiber and the grating. 

As described in Section 4.3, the effect causes the 

shifting in the LPG rejection band and changes the 

maximum band transmissivity. The measurement of 

viscosity is obtained by observing the optical 

response that critically depends on the damping of 

the acoustic wave by the surrounding medium. The 

damped response to the applied signal is a direct 

measure of the relaxation time associated with 

viscous flow – the more viscous the flow the slower 

the relaxation after the impulse signal is applied to 

the grating. The schematic diagram in Fig. 21 shows 

how the viscosity damps the acoustic wave. Figure 

21(a) shows the silica-horn fiber at rest, and Fig. 

21(b) shows the formation of a flexural wave. The 

following figures show how the acoustic wave 

damps, considering an increasing in the viscosity (η) 

of the environment where the fiber is immersed. 

 



(a)

(b) 

 
Fig. 21 Illustration of the acoustic behavior of the silica-horn 

/fiber set when (a) at rest and (b) acousticly excited, considering 

an increase in the external viscosity [18]. 

For testing the viscometer principle, the 

measurement has been performed in anhydrous 

D(+)-glucose (C6H12O6) in de-ionised, distilled 

water. This is a solution with a well-known 

refractive index and viscosity as a function of the 

concentration and is often used to characterize and 

calibrate commercial devices [82]. 

The measurement requires the switching of the 

acoustic flexural wave in the solution using the burst 
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mode of a signal generator. The idea is to probe the 

LPG response within a short interaction time. When 

this happens, the LPG spectrum is shifted, and a 

maximum signal level in the photodetector is 

quickly reached. The analysis is based on observing 

the grating temporal response. Figure 22 shows the 

dynamic behavior of the LPG when immersed in the 

solution with [C6H12O6] = 4023 mol/L for 100 cycles 

of acoustic excitation at f = 39.9 kHz. As seen from 

the figure, the transition time, τr, corresponds to the 

first excitation of the fiber. However, a relaxation of 

the fiber, corresponding to the damping by the 

viscous solution is expected, which changes the 

spectral shift. This corresponds to a small signal 

reduction in the grating response. But because this 

measurement is time dependent, there is a finite time, 

τs
′, before the solution viscosity resists and 

subsequently relaxes the fiber until there is a full 

relaxation at τs, after which a standing wave is 

achieved. Then, a method is necessary to separate 

out the excitation and relaxation time by only 

measuring τr or τs
′ = (τs – τr) in order to obtain a 

linear relationship between the solution 

concentration and the time and, therefore, η. The 

time at which the photodetector signal remains 

constant is labeled as τc and is related to the inertia 

of the fiber after the solution has relaxed around it 

and corresponds to the generation of a standing 

wave. When the acoustic wave is finally switched 

off, the LPG relaxes and experiences the fall time, τf, 

back to the rest state. 
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Fig. 22 Time parameters considering a solution with 

[C6H12O6] = 4023 mol/L [81]. 

Figure 23 shows the behavior of the viscosity 

and rise time depending on the glucose 

concentration. One can see that the viscosity is 

directly related to [C6H12O6] through a quadratic 

dependence (LIDE, 2008). Given that both the rise 

time and concentration have a quadratic dependence, 

this means that the viscosity has a linear dependence 

upon the rise time. Figure 24 shows the linear 

dependence for both the rise time and the total 

relaxation time, τs, upon the viscosity. It is observed 

that both increases, when η increases, are consistent 

with the damping of the acoustic wave by the 

solution as expected ideally. These linear relations 

therefore make viscosity measurement 

straightforward, offering a fully new way of sensing 

this parameter. 
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Fig. 23 Quadratic relationship between the glucose 

concentration and rise time and viscosity [81]. 
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Fig. 24 Viscosity versus time behavior [81]. 

6. Conclusions 

The adequate use of the acousto-optic effect 
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depends on the excitation of a particular acoustic 

mode, which is achieved by providing the correct 

frequency and amplitude to the acousto-optic 

modulator. Previously, however, the characterization 

of the resonances of the piezoelectric element is 

useful in order to identify the relevant resonant 

modes that are further employed in the acoustic 

excitation. By using a numerical approach based on 

the finite elements and the transfer matrix methods, 

one is able to model the acousto-optic modulator 

and simulate the effect. Flexural and longitudinal 

modes can be excited using a configuration, where 

the fiber and the modulator are axially aligned. The 

interaction of the propagating acoustic mode with 

Bragg and long period gratings inscribed in the fiber 

extends the range of applications, which has led to 

the development of tunable filters, dynamic gain 

equalizers, the control of laser parameters and new 

fiber sensors. 

For instance, in the low frequency regime     

(< 250 kHz), when flexural modes dominate, the 

interaction of such a mode with an FBG causes the 

chirp of the grating spectrum. A decay of the grating 

reflectivity is also observed in some cases, revealing 

a coupling of the optical guided mode to radiated 

modes in the cladding. The interaction of flexural 

modes with LPGs makes it possible to induce a shift 

in the rejection band to longer wavelengths and to 

change its transmissivity by controlling the intensity 

of the applied acoustic field. 

On the other hand, when longitudinal modes are 

excited, the period of the compression and 

rarefaction strain field in the fiber becomes shorter. 

Such a field will not only cause an additional change 

in the effective indices of the optical forward and 

backward propagating modes of a Bragg grating, but 

also modulate its pitch, leading to the appearance of 

additional bands on both sides of the grating 

reflection spectrum. Simulation results obtained 

using the FEM and TMM techniques show a very 

good agreement with experimental observations. 

In recent years, new applications of the 

acousto-optic mechanism have been developed, such 

as the technique for writing gratings under the 

acousto-optic excitation and a new type of 

viscometer. Several other devices and applications 

have been also proposed and demonstrated, such as 

the application of the mechanism in the control of 

the Q-switching [59] and mode-locking [62] in laser 

cavities and its use for dispersion compensation in 

optical communication links. Although the 

mechanism is well-known, the study and design of 

acousto-optic modulators is still a topic that deserves 

attention, particularly if one wishes to achieve high 

reproducibility. The experimental characterization of 

acoustic modes is also an area that requires further 

investigation, as the excitation of a specific mode 

impacts the way optical devices operate. 
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